Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS): On-line learning and Application for Time-Series Prediction
نویسندگان
چکیده
This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy system), for adaptive on-line learning, and its application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy rules are created and updated during the operation of the system. At each time moment the output of DENFIS is calculated through a fuzzy inference system based on m-most activated fuzzy rules which are dynamically chosen from a fuzzy rule set. An approach is proposed for a dynamic creation of a firstorder Takagi-Sugeno type fuzzy rule set for the DENFIS model. The fuzzy rules can be inserted into DENFIS before, or during its learning process, and the rules can also be extracted from DENFIS during, or after its learning process. An evolving clustering method (ECM), which is employed in the DENFIS model, is also introduced. It is demonstrated that DENFIS can effectively learn complex temporal sequences in an adaptive way and outperform some existing models.
منابع مشابه
Dynamic Evolving Neuro-Fuzzy Inference System for Mortality Prediction
In this paper we propose a dynamic evolving neuro-fuzzy inference system (DENFIS) to forecast mortality. DENFIS is an adaptive intelligent system suitable for dynamic time series prediction. An Evolving Cluster Method (ECM) drives the learning process. The typical fuzzy rules of the neurofuzzy systems are updated during the learning process and adjusted according to the features of the data. Th...
متن کاملDENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
This paper introduces a new type of fuzzy inference systems, denoted as dynamic evolving neural-fuzzy inference system (DENFIS), for adaptive online and offline learning, and their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning, and accommodate new input data, including new features, new classes, etc., through local ...
متن کاملA Reinforcement Learning Algorithm with Evolving Fuzzy Neural Networks
The synergy of the two paradigms, neural network and fuzzy inference system, has given rise to rapidly emerging filed, neuro-fuzzy systems. Evolving neuro-fuzzy systems are intended to use online learning to extract knowledge from data and perform a high-level adaptation of the network structure. We explore the potential of evolving neuro-fuzzy systems in reinforcement learning (RL) application...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملFeature Mining and Neuro-Fuzzy Inference System for Steganalysis of LSB Matching Stegangoraphy in Grayscale Images
In this paper, we present a scheme based on feature mining and neuro-fuzzy inference system for detecting LSB matching steganography in grayscale images, which is a very challenging problem in steganalysis. Four types of features are proposed, and a Dynamic Evolving Neural Fuzzy Inference System (DENFIS) based feature selection is proposed, as well as the use of Support Vector Machine Recursive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000